Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(1): 489-495, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216498

RESUMO

The environmental effects of microplastics, which are considered a type of emerging contaminants, have attracted increasing concern due to their small size, large specific surface area, strong adsorption capacity, and low degradability. Microplastics can change soil properties and affect the migration ability of nutrients and pollutants in soil, but their effects on the leaching of soil nutrients and heavy metals have not been sufficiently studied. A soil column leaching experiment was conducted to explore the effects of polystyrene (PS) and polylactic acid (PLA) microplastics at different mass fractions (0%, 0.2%, and 2%) on the leaching of nutrients and cadmium under simulated rainfall scenarios. The results showed that increasing rainfall intensity enhanced the leaching of nutrients and cadmium from soil. During downpour conditions, 2% PS significantly increased the leaching of total nitrogen and the content of available phosphorus in soil and reduced the leaching of inorganic phosphorus and the content of ammonium nitrogen in the soil, whereas it increased the content of available potassium during heavy rain. By comparison, 2% PLA reduced the leaching of nitrate nitrogen during heavy rain and intense rainfall and decreased the content of ammonium nitrogen in soil during intense rainfall and downpour conditions and the content of total nitrogen in soil during downpours. In addition, 0.2% PLA significantly increased cadmium leaching during downpours. To conclude, the effects of microplastics on the leaching of nutrients and cadmium were dependent on the type and concentration of microplastics, as well as the rainfall level. Our findings showed that the microplastics derived from both nondegradable PS and biodegradable PLA could affect the leaching of nutrients and heavy metals from soil.

2.
Ecotoxicol Environ Saf ; 263: 115236, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421897

RESUMO

Based on Iron cathodes, nitrate could be selectively decomposed into other lower-valence nitrogen compounds, including ammonia, nitrogen gas, nitrite and nitric oxide, but the removal efficiencies of nitrate and total nitrogen (TN), are affected significantly by the synergistic effects of anodes, chloride electrolyte and conductive plastic particles electrodes. In this work, the base material Titanium (Ti) metal plates and plastic particles which surfaces were mainly coated with Ru-Sn oxidizing compounds, were applied as plates anodes and conductive particles electrodes in Three Dimensional Electrode Reactors (TDER). The Ti/RuSn plate anodes showed excellent performance on degrading nitrate, more nitrogen gas (83.84%) and less ammonia (15.51%) was produced, less TN and Iron ion (0.02 mg/L) was left in the wastewater, and less amount of chemical sludge (0.20 g/L) was produced. Furthermore, the removal efficiencies of nitrate and TN were further increased by the surface-modified plastic particles, which were cheap, reusable, corrosion-resistance, easy to obtain as manufactured materials and light to be suspended in waters. The degradation of nitrate and its intermediates was enhanced possibly by the continuous synergistic reactions initiated by hydrogen radicals, which was generated on the countless surficial active Ru-Sn sites of Ti/RuSn metal plate anodes and plastic particles electrodes, among residual nitrogen intermediates, most of ammonia was selectively converted to gaseous nitrogen by hypochlorite from chloride ion reaction.


Assuntos
Amônia , Nitratos , Nitratos/química , Amônia/química , Cloretos , Ferro , Nitrogênio/química , Eletrodos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...